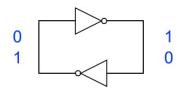


Logique séquentielle

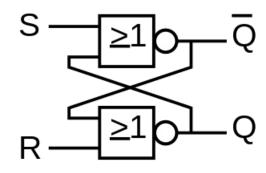
Logique dans laquelle le temps intervient dans la définition des sorties. Elle utilise la notion de mémoire de stockage (bascules, registres, etc.) alors que la logique combinatoire n'en a pas.


L'élément de base de la logique séquentielle est la bascule.

- Logique séquentielle asynchrone : les changements d'état des composants ne dépendent que du temps de réaction des composants et du temps de propagation des signaux
- Logique séquentielle synchrone : les signaux périodiques d'une horloge servent à synchroniser tous les changements d'état
- · Un système séquentiel "garde la mémoire" du passé pour déterminer son état présent
- Types de circuits
 - Astable: le circuit ne possède pas d'état stable (oscillateur)
 - Monostable: le circuit possède un état stable et un état fugitif de durée déterminée déclenché par un évènement particulier (trigger)
 - Bistable: le circuit possède deux états stables (mémoire)

Les bascules

bascule (flip-flop): système permettant de mémoriser une information élémentaire.
C'est un circuit bistable. Attention, il faut un moyen de fixer l'état désiré.



- La bascule RS : RS possède deux entrées de contrôle : Set et Reset, et n'a pas d'entrée de donnée. C'est une bascule <u>asynchrone</u>. Les deux signaux de sortie Q et \overline{Q} sont présents. Le fonctionnement de cette bascule est le suivant :
 - mise à 1 de 5 (Set) : la sortie Q passe à 1 ;
 - mise à 1 de R (Reset) : la sortie Q passe à 0 ;
 - R = S = 0 : état mémoire : la sortie Q maintient sa valeur précédente q.

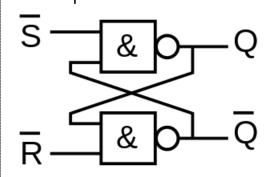

RS avec porte NON-OU

Table de vérité

S	R	Q	Q	remarque	
0	0	q	q	mémoire	
0	1	0	1	mise à O	
1	0	1	0	mise à 1	
1	1	0	0	état interdit	

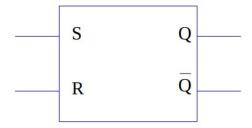

RS avec porte NON-OU

Table de vérité

5	R	Q	Q	remarque
0	0	1	1	état interdit
0	1	1	0	mise à 1
1	0	0	1	mise à 0
1	1	q	q	mémoire

Représentation générique :

- La bascule RST : Bascule RS dans laquelle les entrées R et S ne sont prises en comptes que si elles sont en coïncidence avec un signal de commande
 - bascule bloquée quand le signal de commande est à 0
 - o si le signal de commande est fourni par une horloge : bascule synchrone

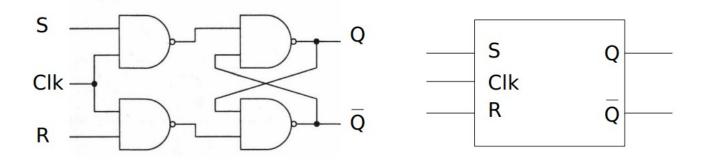


Table de vérité

Н	S	R	Q	Q	remarque		
0	X	X	q	q	mémoire		
1	0	0	q	q	mémoire		
1	0	1	0	1	mise à 0		
1	1	0	1	0	mise à 1		
1	1	1	0	0	état interdit		

- La bascule J-K : permet de lever l'ambiguïté des bascules RST
 - \circ Pour J = K = 0, il y a conservation du dernier état logique Qn-1 indépendamment de l'horloge : état mémoire.
 - Pour J = K = 1, le système bascule à chaque front d'horloge.
 - \circ Pour J différent de K, la sortie Q recopie l'entrée J et la sortie \overline{Q} recopie l'entrée K à chaque front d'horloge.

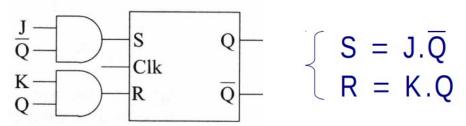


Table de vérité

Table de vérité alternative

J	K	Q _n		
0	0	Q _{n-1}		
0	1	0		
1	0	1		
1	1	$\overline{\mathbf{Q}}_{n-1}$		

Q _{n-1}	J	K	$\mathbf{Q}_{\mathbf{n}}$	remarque
0	0	X	0	pour que la sortie reste à 0, il faut que J soit à 0, peu importe K.
0	1	Х	1	pour que la sortie passe de 0 à 1, il faut que J soit à 1, peu importe K.
1	Х	1	0	pour que la sortie passe de 1 à 0, il faut que K soit à 1, peu importe J.
1	Х	0	1	pour que la sortie reste à 1, il faut que K soit à 0, peu importe J.

- La bascule D
 - o permettent de générer un "retard" (delay) ou de stocker de l'information (latch)
 - o en envoyant une donnée D sur l'entrée J et son inverse sur l'entrée K

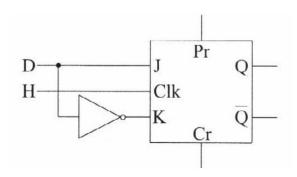
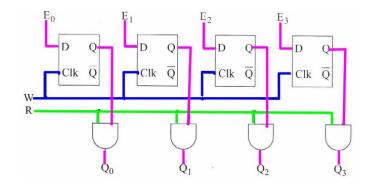


Table de vérité

Χ


Table de vérité (optimisée)

D	Н	Q_n	$\overline{\mathbf{Q}}_{\mathbf{n}}$	remarque
d	7	d	d	Q recopie D
Χ	1,0,front descendant	Q _{n-1}	$\overline{\mathbf{Q}}_{\text{n-1}}$	mémorisation

Rôle des entrées Pr et Cr: entrées asynchrones (lorsque Clk = 0), pour assigner l'état initial de la bascule. En fonctionnement normal, elles doivent être maintenues à 1

Les registres

• Le registre de mémorisation : association de n bascules D pour mémoriser n bits

les entrées présentes sur E0 , E1 , E2 , E3 sont mémorisées en synchronisation avec le signal W : elles peuvent être lues sur les sorties Q0 , Q1 , Q2 , Q3 en coı̈ncidence avec le signal de validation R

Il existe d'autres type de registre, par exemple le registre à décalage. Il existe aussi des compteurs, des temporisations...